
7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

1

Object-Oriented Methodology

Dr. Sothy Vignarajah
Lecture II

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

2

Software Development

• High quality software development is expensive.
Change is from alphanumeric interfaces to event-
driven graphical user interfaces (GUIs)

• Introduction of multi-layer client-server
architecture, distributed databases, internet and so
on.

• Software engineering techniques – modularity,
modifiability, abstraction, reliability, information
hiding, maintainabilty etc.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

3

Software Development

• History of software development is from bit
patterns in machine languages, to
mnemonics in assembly languages to macro
instructions, to procedures to abstract data
types to objects, frames, design patterns and
business objects.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

4

Making up your own
Methodology

• Typical Problems:
• Coding started too early
• Coding started too late
• Procedure ill planned and lacking method to

proceed
• Immediate and final results not verified or

validated.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

5

Making up your own
Methodology

• Application architecture not planned clearly or its
development not within control

• Development driven by an understanding of
object-orientation that is too academic and not
practical minded.

• Guidelines for analysis, design, and
implementation are lacking

• Documentation of results and design decisions
insufficient

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

6

Object-Oriented Methods

• Holistic thinking – individual facts and
phenomena are seen as an integrated whole
where links and interdependencies between
the components form an essential part of the
entirety

• Methodological Uniformity – results of an
activity i in the object-oriented development
process can be taken into activity i + 1

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

7

Object-Oriented Methods

• Class concept is used to work with units of
data and operations instead of a separation
between the attributes and methods

• Evolutionary Development – A complex
system is developed step by step

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

8

Permeable Model
• Coded in Java
• Class Customer
• {
• String name;
• Address address;
• Solvency solvency;
• Public int checkSolvency()
• {
• }
• }

Customer

name

address

solvency

checkSolvency()

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

9

Class - Object
ObjectClass

instance of

instance of
Cow Molly Milk

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

10

Class

Circle

radius { radius > 0}

centerpoint: point = (10,10)

display()

remove()

setPosition(pos:Point)

setRadius(newRadius)

Class name

Attribute
name

Operations

Constraint

Initial Value

Parameters

(name: type =

initial value)

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

117/15/2002 776.705 Lecture I AVignarajah,
Summer 2002 JHU,Washington DC

25

1990

1997

1995

Ada -Booch OOSA
Shlaer/Mellor

OOSE
Jacobsen

OOSE 94

Booch ‘93

OMT Rumbaugh et al.

OMT ;94

OBA
Gibson/Goldb.

Fusion Coleman

OOA
Coad/Yourdon

OODA Martin/Odell

UM 0.8
Booch/Rumbaugh

UML 0.9

‘Amigos

RD
Shlaer/Mellor

SOMA

Graham

Booch ’91
Booch

UML 1.0

Amigos

OMG
Acceptance
11/97

Notation
Team Fusion

Coleman et al.

OPEN/OML

Open-Group

MOSES

Henderson-
Sellers

RDD Wirfs-Brock

OOPSLA ‘95

Harel State
Charts

Object-Oriented Languages Development

UML 1.1

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

12

History of Object Orientation

• Object-orientation and object-orientation
languages is almost 30 years old. Books on
object-oriented analysis design started to appear in
the early 1990s.As shown in figure:

• The authors included Grady Booch, Coad and
Yourdon, Rumbaugh, Wirfs-Brock and Johnson,
Shlaer and Mellor, Martin and Odell, Henderson-
Sellers, and Firesmith.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

13

History of Object Orientation

• Others to make a contribution were
Goldberg and Rubin, and Jacobson.

• In the early 1990s, works of Grady Booch
and James Rumbaugh became very popular.
Works of Grady Booch was more
commercial and technical while those of
James Rumbaugh was more structure
oriented.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

14

History of Object Orientation

• In 1995, Grady Booch and James
Rumbaugh began to combine their methods
to form a common notation called Unified
Method (UM). Ivar Jacobson joined in
integrating his so-called use cases. They
called themselves ‘Amigos’.It had a large
market share and in 1997 UML 1.1 was
submitted to the OMG for standardization.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

15

Use Case Diagram

• Use case diagrams show actors(involved party,
event, external system, dialog, boundary, control,
entity) use cases, and their relationships.

• Use cases describe the basic processes in the
application area.

• It describes the relationship between a set of use
cases and the actors involved in these use cases.
They represent both context and structure for the
description of how a business event is handled.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

16

Use Case Diagram

• The business event for example could be the
written damage report of a home-insured
person.

• The business process for example could be
the damage claim home insurance, which
describes the entire process of handling
such an event.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

17

Use Case Diagram

• The business process (Damage claim home
insurance) also includes activities that are not
directly supported by the software or the
application to be developed, like visit to the
premises by a loss adjuster.

• Use cases usually describe only those activities
that are described by the software under
development, and their contact points with the
environment of this software.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

18

Use Case Diagram

• All of the use cases form the model which
describes the requirements to be met by the
external behavior of the entire system.

• Use cases do not represent a design
approach, and they do not describe the
internal behavior of the system.

• Use cases are a tool for requirement
determination.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

19

Use Cases

• Use cases are not process diagrams, data
flow charts, nor functional models.

• Use cases support communication with
future users, the customer, the technical
department, and so on.

• Use cases describe external system
behavior, that is what the system is
supposed to do.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

20

Use Cases

• Use Cases do not describe how it comes
into being, ie. which system design and
which implementation contribute to this
external system behavior are questions
which the use cases do not provide an
answer for.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

21

Use Case Diagram

• A use case diagram includes a set of use
cases represented by individual ellipses, and
a set of actors and events involved. The use
cases are joined by straight lines with the
classes involved. A frame around the use
cases symbolizes the system boundaries.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

22

Notation

EntityActor

Boundary Control

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

23

Notation
Customer <Actor> Textual stereotyping

<Customer> Visual stereotyping

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

24

Notation

<Actor>
Customer

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

25

Actor1

Pathname:: usecase1

Use case 2

Use case 3

Actor2

Actor 3

Use Case Diagram

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

26

Notations

• include substitutes the ‘uses’ relationship of
UML 1.1 and is used to denote that another
use case occurs inside a use case. The
construct is suitable to extract identical
sections occurring in several use cases in
order to prevent redundancy.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

27

Notations

• extend – used to show that in certain
circumstances or at a specific point (the so
called extension point) a use case is
extended with another use case.

• Generalization (UML 1.3) permits sub use
cases to inherit behavior and semantics
from super use cases, in analogy with the
generalization relationship between classes.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

7/15/2002 776.705 Lecture II AVignarajah,
Summer 2002 JHU,Washington DC

28

Class diagrams

• It shows a set of static model elements, in
particular classes, and their relations.It is a
relationship between actors and use cases.

• It represents both context and structure for
the description of how a business event is
handled.

This document is created using PDFmail (Copyright RTE Software)
http://www.pdfmail.com

http://www.pdfmail.com

